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Binding of a mobile hole by an impurity potential in the #-J model: Parity breaking
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We revisit the problem of a single hole moving in the background of the two-dimensional Heisenberg
antiferromagnet. The hole is loosely bound by an impurity potential. We show that the bound state is generi-
cally a parity doublet: there are parametrically close bound states of opposite parity. Due to the degeneracy the
bound state readily breaks local symmetries of the square lattice and this leads to formation of the long-range
spiral distortion of the antiferromagnetic background. A direct analogy with van der Waals forces in atomic

physics is discussed.
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I. INTRODUCTION

The problem of single hole binding by an attractive po-
tential in the 7-J model is of fundamental importance. In the
physics of doped Mott insulatoris and in particular in the
physics of the cuprate superconductors, the system play a
role analogous to the that played by the hydrogen atom in
atomic physics.

We have in mind, for example, La,CuO, with a La ion
replaced by Sr. Alternatively it may be Ca,CuO,Cl, with a
Ca ion replaced by Na. An important point is that the attrac-
tive center (Sr ion in La,CuQ, or Na ion in Ca,CuO,Cl,) sits
in the center of a square of four Cu sites. This means that the
attractive potential itself does not break the local square lat-
tice symmetry. There are various aspects of the bound state
problem: the symmetry/parity of the bound state, the struc-
ture of the spin fabric, and in the end the particular value of
the binding energy. We argue that the symmetry issues are
the most important ones.

There have been several studies of the bound state prob-
lem. These are mainly small cluster exact
diagonalizations.' A generic limitation of this approach is
the small cluster size and as a consequence sensitivity to
boundary conditions. In spite of this limitation a very impor-
tant observation has been made already in the early work:?
the ground state is almost degenerate with another state that
has opposite parity. Dependent on the parameters of the
model, the ground state belongs either to the two-
dimensional E representation of the C4, symmetry group of
the Hamiltonian or to the A, representation.* However, there
is always a very low-lying excitation of opposite parity.

A semiclassical solution of the bound state problem was
obtained in Ref. 5. Generally a semiclassical approach can be
justified in the limit of a large radius of the bound state.
According to the semiclassical solution the bound state gen-
erates a long-range (<1/r) spiral distortion of the spin fabric
as it is shown in Fig. 1. The figure shows staggered spins. It
is obvious from Fig. 1 that the semiclassical solution does
not have a definite parity. It does not fit in any representation
of the symmetry group of the square lattice. So the solution
spontaneously breaks the local square lattice symmetry. On
the other hand it is impossible to have a spontaneous viola-
tion of an exact symmetry of the Hamiltonian in a finite
system. Therefore, the exact parameter that justifies the semi-
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classical solution® has remained unclear. The purpose of the
present work is to elucidate this parameter and hence to elu-
cidate the physical meaning of the solution with violation of
exact symmetries. We show that the physics of this system is
similar to the physics of a hydrogen atom in an external
electric field. The parameter that justifies the semiclassical
solution is the small splitting between states of opposite par-
ity. The splitting scales as the binding-energy squared and
hence it is infinitesimally small for a shallow bound state.

In the present paper we consider a local spin spiral pro-
duced by a single hole bound by an impurity potential. This
problem represents a “hydrogen atom” of physics of cu-
prates. The spin spiral is not always related to impurities, the
spin spiral of slightly different structure is developed at uni-
form doping as well. Formation of spin spirals is a generic
property of the two-dimensional (2D) extended #-J model at
small doping. A specific way of evolution from Mott insula-
tor to finite doping as well as specific structure of the spin
spiral depends on details such as presence/absence of impu-
rities, presence/absence of the double layer splitting, etc. An
overview of possible ways of evolution as well as compari-
son with experimental data is presented in Ref. 6.

The structure of the present paper is as follows. In Sec. II
we explain the analogy with the hydrogen atom. In particu-
lar, we consider the conditions when a long-range tail of the
dipole electric field can be generated by the atom. In Sec. III
we briefly review known properties of an unbound single
hole moving in the antiferromagnetic background of the ¢-J
model. Section IV addresses the limiting case of very strong
binding. Here we present results of exact diagonalizations for
the 4 X4 cluster embedded in an antiferromagnetic back-
ground. In Secs. V and VI we consider the weak binding
limit and discuss symmetry properties of the bound states.
Sec. VII addresses the parity breaking and generation of the
local spin spiral. In Sec. VIII we exclude a possibility of the
local charge density wave (CDW) formation. Our conclu-
sions are presented in Sec. IX.

II. HYDROGEN ATOM

Consider a hydrogen atom in the ground 1s state. The size
is about one Bohr radius, ap. Since the atom is neutral the
electric field at distances r> ay decays exponentially. Let us
consider the same atom in the n=2 state, either the positive
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FIG. 1. (Color online). Distortion of the staggered spin fabric
(small arrows) by the Sr-hole bound state. The left picture corre-
sponds to the pseudospin directed out of the page and the right
picture corresponds to the pseudospin directed in the page. Shaded
area corresponds to the hole localization region. At large distances
spins are directed along the orthorhombic b axis due to pinning by
Dzyaloshinksi-Moriya and XY anisotropies.

parity 2s state or negative parity 2p state. Importantly, they
are degenerate. Because of the degeneracy an infinitesimally
small external electric field, E,,,— 0, will mix the opposite
parity states

1 1
=_|2S>+_|2P0>- (1)
\E \5

Here [2p,) is the state with zero projection of the angular
momentum in the direction of the external electric field. The
state (1) possesses a static electric dipole moment d~ eag.
Hence, a static dipole electric potential and a static electric
field are induced outside the atom, r> ay,

d-r) d 3d-rr

Pina(r) = - e Ejp(r) = - St 5 (2)

Due to the small but nonzero energy splitting A between 2s
and 2p states (Lamb shift), one needs to apply a small but
finite external field, E,,,>A/d, to create the mixed state (1)
and hence to induce the dipole field (2). Importantly, the
induced field (2) is much larger than E,,,.

One can also look at the problem from another point of
view. Consider two hydrogen atoms each in the n=2 state.
The attractive potential between the atoms has two distinct
regimes depending on the distance r between the atoms. The
characteristic distance r, is defined by the condition dz/ri
~A. If ag<r<<r, the potential is

&~

V~- p (3)
In this regime the electric dipole fields of the two atoms lock
to each other. At r>r, the interaction scales as 1/7°, this is
the usual van der Waals regime that is due to fluctuating
dipoles. We will argue below that the dipole distortion of the
spin fabric in the 2D #-J model shown in Fig. 1 is fully
analogous to Egs. (2) and (3). The power in the 2D case is
different, %—> % A more important difference is that in the
t-J model the ground state itself is a parity doublet. The
splitting in the doublet is parametrically small at small bind-
ing energy, it scales as Ax €, where € is the binding energy.
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III. FREE HOLE PROPAGATION IN THE ¢-J MODEL

The 2D #-J model was suggested two decades ago to de-
scribe the essential low-energy physics of high-7,
cuprates.7’9 In its extended version, this model includes ad-
ditional hopping matrix elements #' and ¢’ to second- and
third-nearest Cu neighbors. The Hamiltonian of the r-#'-1"-J
model on the square Cu lattice has the form:

t—J=_t2 Czo jo_t E Cm ' o=t E C“ch"”

({ij)o (ij" Yo (ij"o

+J> (ss Iy ) (4)

(ipo

Here, c is the creation operator for an electron with spin
o(o=T, l) at site i of the square lattice, (ij) indicates first-,
(ij") second-, and (ij") third-nearest neighbor sites. The spin
operator is S,»=%cjaa'aﬁciﬁ, and N;=3,c] ¢;, is the number
density operator. In addition to the Hamiltonian (1) there is
the constraint of no double occupancy, which accounts for
strong electron correlations.

The values of the parameters of the Hamiltonian (4) for
cuprates are known from neutron scattering, Raman spectros-

copy, and ab initio calculations. For La,CuQO, the values
.10-12
re:

J=140 meV — 1,

t =450 meV,
t' =—-70 meV,
" =35 meV. (5)

Hereafter, we set /=1, hence we measure energies in units of
J. In the present work we study generic properties of the
extended 7-J model. Therefore we will vary parameters ¢, t’,
and 7" in a broad range.

At zero doping (no holes), the 7-J model is equivalent to
the Heisenberg model and describes the Mott insulator
La,CuQO,. The removal of a single electron from this Mott
insulator or in other words the injection of a hole, allows the
charge carrier to propagate.

The properties of a free single hole in the 7-J model are
very well studied numerically: see Ref. 13 for a review. At
values of parameters corresponding to the cuprates the dis-
persion of the hole dressed by magnetic quantum fluctuations
has minima at the ‘nodal points’ qy=(*= /2, = 7/2) see Fig.
2. The typical value of the quasiparticle residue at these
points is Z=0.3. By changing the sign of ¢' and ¢’ one can
shift the dispersion minima to the “antinodal points™ (* 7,0)
and (*,0). This situation corresponds to the electron
doped cuprates. We will argue below that the properties of
the shallow bound state are most interesting and rich in the
regime when the minima of the dispersion are at the nodal
points. This is the regime which we consider in the present
work. The dispersion of the hole dressed by magnetic quan-
tum fluctuations is quadratic in the vicinity of q,
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FIG. 2. Magnetic Brillouin Zone with a and b minima of the
hole dispersion

1 1
e(p) = 5/3119? + Eﬁzpﬁ, (6)

where p=q—q,. We set the lattice spacing to unity, 3.81 A
— 1. In Eq. (6) p, is directed along the nodal direction and p,
is directed along the face of the magnetic Brillouin zone
(MBZ), see Fig. 2. At values of the hopping parameters pre-
sented in Eq. (5) the inverse masses are,'* 8, =~ B,~2.5.

It is instructive to consider also the weak coupling limit
t<<J and t'=¢"=0. In this limit the quasiparticle residue is
close to unity, Z=1-0(t>/J?), while the dispersion reads'>

€, =4t cOS g, cOs g, + 214(cos 24, + cos 2q,),

t2
th=025—,
eff J
" t2
teff = 0.287 N

2
r
Bi =41+ 8ty = 3.267,

2
! " t
Br=—41,+ 8ty = 1.237. (7)

IV. HOLE BINDING IN THE STRONG
COUPLING LIMIT

We include a site-dependant potential attraction to an im-
purity,

H:HT—J+HU’

Hy= 2 Ul cip. )
o

A very important point is that the potential U; is symmetric
around the center of a plaquette, see Fig. 3. Note that the
Hamiltonian (8) is written in terms of electrons. Repulsion
for electrons U;> 0 corresponds to hole attraction. Concern-
ing the potential we will consider two possibilities. The first
possibility is the short-range potential which is nonzero only
at four nearest sites, see Fig. 3,

PHYSICAL REVIEW B 80, 195114 (2009)

- —»> < —»>

FIG. 3. (Color online). The strong binding limit. Attraction to
the potential center (a filled red circle in the center of the plaquette)
is so strong that the hole (small empty circle) can hop only within
the few sites around the attractive center. In the exact cluster diago-
nalization we assume that the perimeter spins (blue arrows outside
of the dashed square) are static with (S,)=*=0.3.

U,=U&; 9)
J

where j runs over four nearest sites. The second possibility is
the long-range Coulomb interaction

0
=, (10)
\ry+1

U;=

1

where Q is a dimensionless charge which sits at a distance
one lattice spacing above the plane.

Let us consider first the local potential (9) in the strong
coupling limit, U>t. The solution of the bound state prob-
lem in this limit is qualitatively clear. There are degenerate
states with S,= * % At each values of S, there are states of
positive and negative parity. Let us consider the lowest
bound state in each parity sector. Note that there is only one
lowest state in each sector. This is contrary to the common
wisdom that the negative parity states are doubly degenerate
due to the symmetry of the square lattice (E representation of
C,,). The point is that we consider hole binding on the spin
background with spontaneously broken SU(2) symmetry. In
combination with the impurity potential this breaks the sym-
metry of the square lattice and, hence, destroys degeneracy
of the negative parity states. Binding energies of the lowest
bound states are

A

~ — + —
€+ U=* % (11)
Here the sign = denotes the parity of the bound state. We
define the binding energy € in the standard way: this is the
energy of the bound state taken with respect to the minimum
energy of a free hole. So € is always negative. To find the
parity splitting A in the strong coupling limit we have per-
formed exact diagonalizations of the 7-¢'-J model on the 16
site cluster shown in Fig. 3. While similar exact diagonaliza-

195114-3



O. P. SUSHKOV AND J. OITMAA

PHYSICAL REVIEW B 80, 195114 (2009)

TABLE 1. Exact diagonalization of the 16 site cluster (Fig. 3). The groundstate parity doublet energy
splitting and the rms charge radius of the ground state for several values of 7 and ¢’ and for two values of the
confining potential U. According to Eq. (11) A>0 corresponds to the negative parity of the ground state and
A <0 corresponds to the positive parity of the ground state. The bound state results for values of ¢ and ¢’ that
correspond to the free hole dispersion minima at the nodal points, (£ /2, = 7r/2), are presented by bold font

and underlined.

t'=0 t'=0.5 t'=-0.5

t U A rrms A rrms A rrms
0.25 0 0.002 2.05 0.562 1.34 -0.558 1.33
0.25 10 0.024 0.71 0.570 0.72 -0.577 0.72
0.5 0 0.037 1.83 0.555 1.33 -0.416 1.30
0.5 10 0.075 0.71 0.567 0.72 —-0.547 0.72
1.0 0 0.096 1.60 0.503 1.32 -0.079 1.09
1.0 10 0.172 0.72 0.558 0.73 -0.283 .73
2.0 0 0.062 1.26 0.424 1.25 0.010 1.25
2.0 10 0.253 0.76 0.503 0.76 -0.040 0.76
3.0 0 0.067 1.18 0.337 1.20 0.009 1.21
3.0 10 0.237 0.79 0.431 0.79 0.004 0.80
4.0 0 0.066 1.17 0.280 1.18 0.004 1.19
4.0 10 0.181 0.82 0.360 0.82 -0.031 0.82

tions have been performed before,'~* the ground-state parity
splitting has not been studied systematically, at least these
results are not available in literature. The goal of the present
section is to study systematically dependence of the ground-
state parity splitting on parameters. We have already pointed
out that it is qualitatively important to perform the diagonal-
ization on the state with spontaneously broken SU(2) sym-
metry. Therefore we put the cluster in the environment of
static perimeter spins shown in Fig. 3 by blue arrows outside
of the dashed square. The magnetization of each static spin
has the Heisenberg model value, (S,)==0.3. Values of the
splitting A within the parity doublet obtained by the 16 site
cluster exact diagonalization are presented in Table 1. In the
same table we present values of the rms charge radius of the
lowest bound state. The results are presented for several val-
ues of ¢ and ¢'. The value of ¢” in this calculation is zero: the
cluster is too small to account for long-range hopping. We
have performed the calculation for two values of the confin-
ing potential, U=0 and U=10. In an infinite system the case
U=0 certainly does not correspond to any binding. However,
for the cluster, due to the imposed boundary conditions, the
case U=0 describes a well localized state of the hole; in this
sense it is bound. Our numerical results qualitatively agree
with those of previous publications.'"* A detailed quantita-
tive comparison is not possible because the previous publi-
cations have considered spin symmetric clusters while we
impose a spontaneous violation of the SU(2) symmetry via
boundary conditions.

The dispersion of a free hole for various values of ¢ and ¢’
is well known from previous work.'3"!> The bound state re-

sults in Table I for values of # and ¢’ that correspond to the
free hole dispersion minima at the nodal points,
(*£7/2, = a/2), are presented by bold font and underlined.
For all other values of ¢ and ¢’ the dispersion minima are at
the antinodal points, (£4r,0), (0, = ), or at the I point, k
=0. The corresponding bound state results in Table I are
shown by standard font. Results presented in Table I lead to
the following observations.

(1) Values of the parity splittings for the “nodal cases”
(underlined bold font) are very small compared to typical
scales in the problem. This conclusion is in agreement with
previous observation.?

(2) Values of the splittings for other cases (antinodal and
“I" point”) are substantially larger.

(3) For each particular “nodal” set of ¢ and ¢’ the splitting
A for U=0 is systematically smaller than that for U=10.

The first and second observations indicate that the bound
state is close to the parity degeneracy in the case of the nodal
minima of the free hole dispersion. This is why in the present
work we concentrate on this case. According to the third
observation the parity splitting is rapidly decreasing when
the radius of the bound state increases. In following section
we consider shallow bound states of large radius to confirm
these conclusions.

V. HOLE BINDING IN THE WEAK COUPLING LIMIT:
THE LEADING APPROXIMATION

Let us look at the binding problem in the weak coupling
limit, U—0 and €—0. In this case the shallow bound state
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can be built with a hole either from the a or the b valley of
the dispersion, see Fig. 2. Hence the bound state has the
valley index and the corresponding wave function reads

wa(r(r) = eiqﬂ.r(TXa(r(r) 2 (12)

where a=a,b shows the valley and o=71,| shows the mag-
netic sublattice along which the hole is propagating, r, is
position on this sublattice. Note that here we have in mind a
real propagation. There are also virtual hoppings of the hole
to the opposite sublattice. These virtual hoppings lead to for-
mation of the free hole dispersion that was discussed in Sec.
III. The z projection of the hole spin is §,=—o. The oscillat-
ing exponential dependence e«"+ in Eq. (12) is due to the
momentum ¢,=(*=/2, = 7/2) that corresponds to the val-
ley minimum. The very smooth function x(r) exponentially
decaying at infinity is due to the hole binding to the poten-
tial. In the case of the Coulomb field, Eq. (10), the wave

function is'®
2 [ 2 2
X= \/jKe_\zle(rllﬁl"'rZ/ﬁZ),
T

2|e]
—.
VBB,

The components r; and r, in Eq. (13) are projections of r on
directions 1 and 2 corresponding to the particular valley, see
Fig. 2. In the case of the local attraction Eq. (9), the wave
function is

(13)

X= \/L,]_TKO[\/2|6|(V%/BI + 15821, (14)

where K|, is the Bessel function of the second kind. Note that
for both Egs. (13) and (14) the root-mean-square radius of
the bound state scales as

1
rrmsoc/__ (15)
V]€l

ok
It is easy to see that a change of sign of ¢, leads only to a
common phase factor in the wave function (12), so this is the
same wave function. There are only two distinct possibilities:
the a minimum, ¢,=(7/2,7/2) and the b minimum, g,
=(mw/2,—m/2). Thus, there are two degenerate quantum
states for each value of §..

We put the potential center at the origin of the coordinate
system. Then, according to Eq. (12) and Fig. 3 (in this case
one has to remove the cluster boundary and extend the figure
up to infinity) the |{) wave functions read

lwbaT(r) =- iei(W/z)xTH(WQ)yTXa(r) s

(1) = XTI (1),

xT=—+m,
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where both m+n and m—n are integer and even. Similarly
the | | ) wave functions are

oy (1) = T (1),

lﬁbl(r) - l-ei(ﬂ'/Z)xl—i(W/Z)inb(r),

1
= — 4+ s
.XL 5 m
1
yl=—5+l’l. (17)

We put an additional factor —i in ¢, and i, to make these
wave functions real. Under the parity operation x ——x and
y——y, the function x(r) does not change. Therefore parities
of states (16) and (17) are determined by the phase factors,
and the parities are

PuT — eiwxﬁiwyT — ein': -1

b
PbT — eiﬂ'xT—iﬂ'yT — eiO =+ 1’
Pal — eiwxﬁiﬂ'yl — eiO =+ 1’

Pbl =ei77xl+i77yl =ei71'=_ 1. (18)

Thus, in the leading weak coupling limit approximation, €
— 0, the ground state is a degenerate parity doublet for each
value of §,. This explains why values of the parity splitting
presented in Table I by underlined bold font are very small.
The next section is addressed at the mechanism that lifts the
exact parity degeneracy.

VI. HOLE BINDING IN THE WEAK COUPLING LIMIT:
THE SUBLEADING APPROXIMATION

In the present section we demonstrate that in the sublead-
ing weak binding approximation, e—0, the parity degen-
eracy of the ground state obtained in the previous section is
lifted: the parity splitting scales as Ao ¢e”. Because of this
scaling the splitting is very small compared to the binding
energy, A<e.

Signs of the hole wave functions i;,; and #,; given by Eq.
(16) are shown in Fig. 4. In this case the hole is moving on
the “up” sublattice. To avoid misunderstanding we stress that
there is only one hole, we do not show spins up in Fig. 4 just
to make the figure less busy. The figure clearly demonstrates
that the states have opposite parities and different diagonal
momenta, q,=(7/2,/2) and q,=(7/2,-7/2).

It is clear from Fig. 4 that the difference in energy be-
tween states ,; and ¢, arises due to diagonal hopping of
the hole in the vicinity of the potential, A/ |x(0)|*, where
1. is the effective diagonal hopping that is due to the bare ¢’
and also due to higher orders in 7, see, e.g., Eq. (7). More-
over, the splitting cannot be just proportional to |x(0)|*; the
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FIG. 4. (Color online). Left: signs of the wave function ¢,
Right: signs of the wave function ;. The potential center is shown
by the filled red circle.

splitting must contain a gradient of y because there is no a
splitting for free hole propagation when y=const. The first
power of the gradient in the energy splitting is forbidden by
parity. Thus we come to the following formula for the energy
splitting

A o 1l VX (0)°. (19)

The formula contains the second power of gradient, so it is
allowed by parity. Having in mind Egs. (13) and (14) and
using Eq. (19) we conclude that

t’
A it o 1] o0 (20)

rms

We stress that this formula follows from general symmetry
considerations based on degeneracy of the free hole disper-
sion at the four nodal points g=(*m/2, * 7/2). The sym-
metry arguments certainly do not allow to determine a coef-
ficient in Eq. (20). However, they do allow us to determine
the scaling law given by Eq. (20).

It is helpful to support the general considerations pre-
sented in the previous paragraph by a numerical calculation.
Such a calculation in the regime ¢>J is hardly possible.
However, in the regime #<<J the calculation can be per-
formed using results of Ref. 15 summarized in Eq. (7). Ac-
cording to the results the spin quantum fluctuations can be
integrated out and the hole propagation on the sublattice up
is described by the following effective Hamiltonian

Heg=tl > hihj + 15 25 hih. (21)
" W
Here h; is the holon creation operator on the site i; all the
sites 7, j', and j” belong to the sublattice up. To be specific
we consider here the Coulomb attraction (8) and (10). The
attractive interaction written in terms of holon operators
reads

He=- >, Uhlh;, (22)

where U, is given by Eq. (10). The Hamiltonian H ¢+ H can
be easily diagonalized numerically on a very large cluster.
Results of diagonalizations for 30 X 30 cluster with 7.,=0.1,
12+=0.25 and for three values of the dimensionless charge
0=0.75, 0=0.5, and 9=0.25 are shown in Fig. 5. In this
figure we show the holon probability distribution for shallow
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o I N - Q=025 r, =72, e=-0.04, NE’=0.013

FIG. 5. The shallow Coulomb bound state wave function
squared, x2, versus radius. Wave functions are shown for three val-
ues of the dimensionless charge: 0=0.75, 0=0.5, and 0=0.25.
Values of the effective hopping parameters are f,;=0.1 and iy
=0.25. In the legend, for every value of Q we also present the rms
radius of the bound state, r,,,,.; the binding energy, €; and the ratio of
the parity doublet splitting over the binding energy squared, A/ €.

bound states, and in the legends we present values of the rms
radius, 7, the binding energy, €; and the ratio A/€>. Ac-
cording to the data in Fig. 5, in the limit e—0 the parity
splitting A is decaying even slightly faster than oe’. Most
likely the small deviation from the expected € scaling is due
to the finite cluster size. We have also checked that the split-
ting A vanishes at #.;=0. Altogether the numerical results
presented in Fig. 5 confirm the scaling law given by Eq. (20).

The conclusion of the present section is that the ground
state parity splitting is decaying Ao e’oc1/ rfms when the
binding energy is decreasing, €— 0, r,,s— . To estimate the
coefficient in this dependence at t>J one can refer to results
of exact numerical diagonalizations presented in Table I. It is
known experimentally that in very lightly doped
La,_ . Sr,CuQ, a hole binding energy to Sr ion is about e=
—10 meV, the bound state “wave vector” is k= 0.4, and the
rms radius of the bound state is r,,= 3, as discussed in Ref.
5 Estimates based on results derived in Secs. IV and VI show
that the expected parity splitting of the ground state in this
case is a small fraction of 1 meV. Therefore, parity breaking
is practically a zero mode of the system.

VII. PARITY BREAKING AND FORMATION OF THE
LOCAL SPIN SPIRAL

According to the discussion in previous sections a single
hole bound state in the 7-J model always has a definite value
of the spin projection on the direction of staggered magneti-
zation, S,= £ 1/2, and it always has a definite parity. Depen-
dent on parameters, ¢, t', etc., the ground state parity can be
positive or negative, but it is definite. There is no local spin
spiral at this stage. Very close to the ground state there is
always a state of opposite parity. Wave functions of these
states are given by Egs. (16) and (17), and parities are given
by Eq. (18). Now, following the 2s-2p hydrogen atom sce-
nario discussed in Sec. II, we can mix the opposite parity
states by a weak external perturbation. There are two possi-
bilities: (1) mixing of states with different S, that belong to
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FIG. 6. Hole-spin-wave vertex corresponding to Hamiltonian
(24).

the same hole pocket, (2) mixing of states with the same S,
that belong to different hole pockets. In the present section
we consider the first possibility that leads to formation of a
local spin spiral shown in Fig. 1. The second possibility
could lead to formation of a CDW. However, we show in the
following section that this possibility is energetically unfa-
vorable.

Thus, let us mix the opposite parity states with different S,
that belong to the same pocket. To do so, we impose a very
weak uniform spin twist on the system. At this stage it be-
comes convenient to use the notation of the nonlinear o
model. In this notation the unit vector 7i(r) shows direction of
staggered spins. In the antiferromagnetic state the spins are
directed along the z axis in the spin space, 7=n,=(0,0,1).
The uniform spin twist means that the spin direction 7 rotates
around a unit vector é that is orthogonal to the z axis. So
locally we can write

Sii(r) = (Q - [ X . (23)

Here Q<1 is the wave vector of the imposed twist. Let us
direct Q along the b nodal direction, see Fig. 2, @=0Qe,,
where e, is the b-nodal unit vector. It is worth noting that
generally directions in spin space and directions in the coor-
dinate space are completely independent. The interaction of a
hole with the deformation of the spin fabric is of the follow-
ing form'’

Hyp=—\2g6 X [ X (e Vi ], (24)

where e is a nodal unit vector corresponding to the particular
hole, ¢ is the Pauli matrix acting on pseudospin of the hole.
Note that in the notation of the original #-J model the effec-
tive Hamiltonian (24) is just the usual hole-spin-wave vertex
shown in Fig. 6. Therefore the coupling constant is g=Zt
=~ |, where Z=J/t is the quasiparticle residue of the hole.

Since @ =Qe,, the interaction (24) does not mix states s,
and ¢, however, it does mix states #,; and . The corre-
sponding interaction energy is

OE == \2g0(H (- & | ). (25)

If the interaction energy is larger than the parity doublet
splitting,

260> A, (26)

the bound state wave function becomes a mixture of the op-
posite parity states
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1 A
b= —(hy + €'Y, (27)
V2

with the phase « determined by the condition (i|G|y)=¢.
Thus, the uniform spin twist Q is completely analogous to a
weak uniform electric filed E,,, applied to hydrogen atom as
has been discussed in Sec. II. The wave function mixing (27)
is analogous to the mixing (1). Estimates based on values of
A obtained in previous sections show that for a bound state
with radius r,,,=3 the twist 0=0.001-0.002 is already suf-
ficient to break the parity according to Egs. (26) and (27).
Note that this small value of Q corresponds to a wavelength
of about 5000 lattice spacing.

The state (27) possesses a spin-flip dipole moment and
hence it creates a long range distortion of the spin fabric as
has been discussed in Ref. 5

. . g (e-r)
Oyg=[EX Al—=——7F—
N2mpy

[1-e29(1+2kr)]. (28)

Here p,~0.18/ is the spin stiffness of the Heisenberg model,
and « is the inverse radius of the charge core, see Eq. (13).
Equation (28) describes the local spiral depicted in Fig. 1,
the local spin spiral is fully analogous to the long-range sca-
lar potential ¢;,4(r) generated by an excited hydrogen atom
in a tiny external electric field, see Eq. (2).

To derive Eq. (27) and hence to justify the local spin
spiral (28) we have introduced a tiny external spin twist that
enforces the parity breaking. Alternatively, one can consider
an interaction between two holes bound to two impurities
separated by a large distance r. Then there is no need for any
external twist. Spin spirals induced by different holes lock
each other. Hence the spin spiral induced hole-hole interac-
tion is'®

Eg~--2—=. (29)

This formula is valid at r<<r,, while at r>r, the interaction
is Ego1/r*. Once more, this is absolutely similar to the case
of two Hydrogen atoms, see Eq. (3). Estimates based on
values of A obtained in Secs. IV and VI show that for bound
states with radius r,,,=3 the value of the crossover distance
is ry ~50. So practically Eq. (29) is always valid. To restore
dimension in Eq. (29) one has to recall that g=J
~ 140 meV, p,~0.18/ while dimensionless r is expressed
in units of lattice spacing.

VIII. PARITY BREAKING AND POSSIBLE FORMATION
OF THE CHARGE DENSITY WAVE

We consider now a possible mixing of the bound states
with the same S, that belong to different hole pockets. Since
the spin is not changed there is no deformation of the spin
fabric, and a usual electrostatic potential can mix the states.
However, the spatial wave functions from different pockets
differ by momentum K=(7,0) or K=(0, ). Therefore, to
generate the mixing the electrostatic potential must be modu-
lated at this momentum. So, the mechanism can produce a
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CDW with the wave vector K. Let ¢ is a Fourier component
of the external electrostatic potential. The component inter-
acts with the corresponding matrix element of charge density

Pk=f WZT(")e_ik'r%Td%’

=JX2(r)ei(K—k)~rd2r

B 81
T[4+ (K- k)P

We have used here Egs. (16) and (13). We assume that B3,
=[3,, this allows to evaluate the integral in Eq. (30) analyti-
cally. Numerical integration shows that Eq. (30) is approxi-
mately valid even with nonequal inverse masses. For ex-
ample at [;/B,=4 the deviation from the analytical
expression Eq. (30) does not exceed a few percent.

We proceed now directly to the Coulomb interaction be-
tween two holes bound to two different impurities separated
by large distance r. Since the system is two-dimensional the
electrostatic potential created by a charge-density component

P 1s

(30)

2
b=""px- (31)
k
Therefore the Coulomb interaction energy between two spa-
tially separated bound states reads

27 o . d*k
Ec=- | —ppe*——. 32
c f X Pre (277_)2 ( )

Note that the sign is negative because the system always
tunes up the mixing phases to reduce energy. Evaluation of
Eq. (32) with account of Eq. (30) is straightforward. In the
limit kr> 1 the result reads

2\ 2
Ec=- <e—)K—(2Kr)2\/le‘2”. (33)
ae,) 2 4kr

Here « is dimensionless and we put the factor e?/(ae,)
~95 meV to restore the dimension of energy (e is the el-
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ementary charge, a=3.81 A is the lattice spacing and e,
~40 is the dielectric constant).

Now we can compare the CDW Coulomb interaction (33)
with the spin-spiral interaction (29). In LSCO the “wave vec-
tor” of the bound state is k=0.4, see Ref. 5. Let us take r
=4 that corresponds to the average distance between bound
states at the doping level x = 0.06. With these parameters one
finds E-=1 meV while E¢~ 15 meV. Thus formation of
the CDW is energetically unfavorable compared to formation
of the spin spiral.

IX. CONCLUSIONS

We have considered a single hole injected into a two-
dimensional Mott insulator on a square lattice with a long
range antiferromagnetic order. The system is described by
the extended #-J model. An important point is that minima of
the hole dispersion are at nodal points (=7/2, = //2). The
hole is bound by an impurity potential. The impurity is lo-
cated at a center of the lattice plaquette, so the potential itself
does not break the local square lattice symmetry.

(1) All bound states have definite parity and they are dou-
bly degenerate with respect to the spin projection on the axis
of the staggered magnetization, S,= = %

(2) The ground state always has a very close state of
opposite parity (parity doublet). For shallow bound states
splitting within the parity doublet scales as A« €2, where € is
binding energy.

(3) For shallow bound states the parity splitting A is ex-
tremely small. Therefore an extremely small external twist of
the spin fabric breaks parity. The breaking creates a long-
range spiral distortion of the spin fabric. The breaking can be
also created by another impurity; in this case the local spirals
of two impurities lock each other.

(4) The bound state parity breaking in the 7-J model is
very similar to the parity breaking within the 2s;,-2py),
parity doublet of the hydrogen atom.
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